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Introduction 
 
 The past decade has seen a profusion of research that estimates growth regressions.1 
Using cross-sections or short cross-country panels, these models regress the growth in real per 
capita income on real per capita income in a base year and other possible determinants of 
economic growth. While some of the questions that this research addresses are of theoretical 
interest, most notably the question of conditional convergence of real incomes across countries, 
most of the papers are quite practical, attempting to inform policy by identifying variables that 
explain growth rates. 
 
 It is easy to be skeptical of these regressions. Specifications are often ad hoc. Many 
regressors would seem to be endogenous, but are not instrumented, or are instrumented poorly. 
And early on, there was clear indication that results are not robust. Levine and Renelt (1992) 
showed that almost all of the regressors that authors have proposed as important determinants of 
economic growth do not survive an extreme bounds analysis (Leamer, 1983).2 These problems 
are compounded by the abundance of potential explanatory variables that authors have proposed 
– Durlauf and Quah (1999) found more than 90 in a recent review of the literature – and the 
relative scarcity of data, there being only about 120 countries with data available for the basic set 
of regressors. In such an environment, statistics alone cannot determine the appropriate model of 
growth determinants. 
 

Despite these limitations, many of the growth regression papers have figured prominently 
in the debate about economic policy and economic growth. Some economists, and probably more 
policy makers, have been persuaded of the value of open trade (Dollar and Kraay, 2001), low 
budget deficits (Easterly and Levine, 1997), financial deepening (Levine and Zervos, 1998), and 
an educated workforce (Barro and Lee, 1994).  

 
 In this paper, I pursue the growth regression model, warts and all, but with a change of 
variable. Rather than explaining increases in GDP per capita, I attempt to explain decreases in 
the infant mortality rate. There are four reasons for doing this, two conceptual and two 
econometric. The first conceptual justification follows Sen (1979, 1985, 1987). The traditional 
economics literature gauges poverty in terms of deprivation of means, income, which at a 
national level leads naturally to an analysis of GDP and its determinants. Sen argues instead for 
viewing poverty as a deprivation of ends (capabilities and functionings, in his terms) that are 
intrinsically important. Certainly, survival is a basic capability, so that infant mortality is an 
interesting indicator of well being, worthy of study in its own right. Just as understanding the 
determinants of infant mortality at a micro level is a valuable exercise (Stifel, Sahn, and Younger 
2000), so too is understanding the determinants of infant mortality rates at a national level. While 
this in no way supposes that infant mortality (or any other outcome) should replace income as the 

                                                 
1 There are far too many empirical growth papers to list them here or anywhere in this paper, but a good place to 
start is Durlauf and Quah, 1999. The references that I include are illustrative papers; many more are available. 
2 Leamer’s extreme bounds analysis runs many regressions with different specifications, including different 
regressors, keeping only the regressors of interest in all specifications. It then checks to see that the coefficient on 
these regressors are stable in the many different specifications, and if they remain statistically significant. 
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measure of welfare, it certainly seems sensible to include it as one such measure. This paper 
begins such a study. 
 

The second conceptual reason for studying infant mortality is that its distributional 
characteristics are almost certainly more sensitive to the welfare of the poor (Pradhan, Sahn, and 
Younger, 2001). As welfare broadly conceived rises, both income and mortality probabilities 
fall, but the relationship between the two is surely not linear. Incomes can continue to rise 
indefinitely, while mortality probabilities have an obvious lower bound. An important 
implication of this fact is that improvements in welfare, for individuals or nations, are more 
likely to be associated with improvements in mortality if welfare is low, whereas there is no 
obvious correlation between welfare improvements and the initial level of income. For at least 
some policy discussions, particularly those that are concerned with how a nation’s progress 
reduces poverty, the greater emphasis on the poorest implied by a focus on mortality is desirable. 

 
The first econometric justification for this paper’s approach follows an argument in Jones 

(1995). In a standard growth regression, the dependent variable (growth in real per capita GDP) 
is probably stationary, that is, it stays around a given rate, tending back to that rate when it is 
either higher or lower. On the other hand, the log of real per capita GDP, one of the independent 
variables in a growth regression, is not stationary; it increases regularly and has no tendency to 
decline once it has increased. Even if the regression produces a partial correlation between 
growth and the level of GDP, such a correlation is almost surely spurious, since one variable that 
stays stationary around a given value cannot move consistently with another that trends upward 
(Granger and Newbold, 1974). The only possible exception to this observation is if the non-
stationary regressor is fortuitously cointegrated with the other regressors, so that the entire right-
hand side of the regression is stationary when the effects are netted out. Both Jones (1995) and 
Easterly (2000) suggest that this is not the case, so then the regression is likely to be spurious. 
Infant mortality rates, however, are stationary. Logically, they must hit a lower bound of zero at 
some point. Empirically, I show that the autocorrelation of IMRs is fairly low, and that formal 
tests reject the null of a unit root in the IMR or its log. 

  
Finally, an important problem with growth regressions is that there are relatively few data 

to run them on. Barro’s original regression used average growth rates over 25 years for one 
cross-section of countries. The argument for this is that we want to estimate long-run structural 
determinants of growth, not short-run autocorrelations driven by the business cycle. In practice, 
however, many subsequent papers have used panels of growth rates over decades or even five-
year periods rather than a simple cross-section in order to generate more observations. Given the 
high autocorrelation of real GDP, this is a risky practice. Conceptually, the infant mortality rate 
seems less likely to be influenced by the business cycle or other high-frequency events. As we 
will see, autocorrelations for IMRs are much lower than those for GDP, so that panels drawn for 
periods perhaps as short as five years are more defensible. 

 
The layout of the paper is as follows. The following section lays out the specification of 

the standard growth regression model, and explains how I will mimic it for IMRs in this paper. 
This section also compares this specification to regressions of IMRs on their determinants found 
in the literature. I then explore the time series properties of IMRs, followed by the results for the 
main model of IMRs. 
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Specification of a “Growth Regression” Model of Declines in Infant Mortality 
 
 The aim of this paper is to estimate a cross-country model for declines in infant mortality 
using a growth regression specification. The basis for that specification is very simple, though it 
is often overlooked.3 The growth rate is taken to be a linear function of the gap between current 
GDP per capita and a steady state level of GDP: 
 

ttt
t

t yy
dt
dyg εββ +−+== )( *

10  (1) 

 
where yt is the log of current GDP per capita; y* is its steady state growth path; gt is the current 
growth rate; β1 is the rate at which yt converges to y*; and β0 is the exogenous growth rate of y* 
(the rate of technical progress). Few empirical growth papers start with this simple equation, so 
they tend to lose site of an important econometric point:  yt and y* are almost certainly non-
stationary processes, while gt is probably stationary.4 For equation (1) to make sense, then, yt and 
y* should be cointegrated, a point first noted by Jones (1995). If they are not, then there is a risk 
of spurious regression. The dependent variable is stationary while the right-hand side of the 
regression will wander off indefinitely, making it implausible that any estimated correlation 
captures a true structural relationship. 
 
 Of course, y* is unobservable, so we must write it as a function of some observable 
variables 
 

ttt uXy += γ*  (2) 
 

which allows practitioners to include policy variables as determinants of economic growth: 
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We can argue, for example, that countries with policies that encourage greater financial depth are 
on higher steady-state growth paths than those with shallow financial markets. For a given yt, 
this higher value of y* will induce more rapid growth because of the larger gap between the two. 
This phenomenon is only temporary since, once the gap is closed, the country’s growth will 
converge to the normal rate. But most empirical evidence suggests that this convergence is very 
slow, so that better policy (or any other advantageous Xt) will improve growth for a long time 
(Barro and Sala-i-Martin, 1999). In this case, yt and Xt must now be cointegrated, but there is 
little support for that in data (Jones, 1995; Easterly, 2000).  Of course, growth regressions 
generally use cross-section data rather than a time series for an individual country. But the only 
way to justify such regressions is to assume that each country observation is a draw from a 

                                                 
3 Barro and Sala-i-Martin (1999, ch.12) give a clear presentation. 
4 The next section supports these claims empirically. 
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unique stochastic growth process, so that the time series concepts should apply to the cross-
section data. 
 
 Unlike GDP, infant mortality rates are likely to follow a stationary process. At the 
extreme, they have to, because the rate cannot go below zero.5 In this case, yt, y*, and gt are all 
stationary variables, and there is no risk of spurious regression in the sense of Granger and 
Newbold. The intuition for the model is exactly the same. Policy variables determine the steady-
state IMR and its rate of change is a function of the distance between the current and steady-state 
IMRs. 
 
 There are, of course, other papers that use cross-country data to estimate the determinants 
of infant mortality rates. Until recently, almost all used a specification like: 
 

ttt XIMR εγ +=  (4) 
 
that is, the IMR itself as a function of policy (and other) variables. This specification, however, 
does not capture the dynamics inherent in a growth regression. In addition, there is an 
econometric risk that country- or time-specific fixed effects can easily lead to a spurious 
correlation (Easterly, 2000). To account for this problem, Pritchett and Summers (1996) include 
fixed effects for country and time in a panel regression, though there interest is confined 
primarily to the relationship between the IMR and income per capita rather than policy variables. 
Similarly, Easterly (1999) uses either county fixed effects or first differences of equation (4), but 
using only per capita income as a regressor. In terms of specification, then, the innovation of this 
paper is to capture the convergence of IMRs in a growth regression framework, and to include 
policy variables among the regressors that help to explain infant mortality rates. 
 
 

Time Series Characteristics of Infant Mortality Rates 
 
 Figure 1 shows the infant mortality rates drawn from three years of the Global 
Development Network’s growth database (Easterly and Sewadeh, 2001), ordered from highest to 
lowest. The data shift down over time, which reflects general technological progress in the 
prevention of infant mortality, and for all but perhaps the 1962 data, they are clearly convex, 
suggesting that the IMR is indeed stationary. Unfortunately, these can be no more than 
illustrative, because there is no justification for ordering a cross-section of countries in this way. 
Further, as Bhargava, et.al. (2001) point out, the publicly available, country-specific IMR series 
include projections and/or interpolations, so that a time series analysis using them would be just 
as likely to pick up the rules used for projecting the data as their true time series characteristics. 
 
 Fortunately, there is an alternative data source that provides reasonable and comparable 
time series for infant mortality rates. The Demographic and Health Surveys (Macro 
International) include careful birth and death information for all the children born to a random 
sample of women of childbearing age (15-49 years old). 151 DHS surveys have been or are 

                                                 
5 Again, the next section supports this claim empirically. 
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being carried out in 68 countries, using virtually identical questionnaires. Using this information, 
it is possible to estimate a time series of IMRs going back t years for children born to women age 
15 to (49-t). This sample continues to be random because being of an age between 15 and 49-t 
did not figure in the selection, but it is for a smaller population of women. Since infant mortality 
usually declines with mother’s age, the IMR estimates here may be a little high. While there 
might be some concern about the accuracy of recall over long periods of time, a child’s birth or 
death is an unlikely thing to forget. In practice, IMRs calculated with the DHS data correspond 
well to information in other sources, with no clear bias up or down for lags up to 10 years (Sahn, 
Stifel, and Younger, 2000). In what follows, I use the same 10-year lag length, so that I am 
calculating IMRs for children born to women ages 15-39. 
 
 The data form an unbalanced panel of 82 DHS surveys.6  Im, Pesaran, and Shin (1997) 
derive the sampling distribution for a “t-bar” statistic to test the null hypothesis of a unit root in 
heterogeneous panels of time series data.7  This statistic is applicable to an average of the t-
statistics from individual Dickey-Fuller regressions for each country: 
 

ttttt dIMRdIMRIMRdIMR εββα +++= −−− ...22111  (5) 
 
where IMR is the infant mortality rate, dIMR is its change from period t-1 to t, and α is one 
minus the autocorrelation coefficient. If α is zero, then the series has an autocorrelation of one, 
or a unit root, and is thus nonstationary. Thus, the Dickey-Fuller test tests the null hypothesis that 
α equals zero. In addition to the lagged level of the IMR, it is important to include enough 
lagged dependent variables (dIMRs) to ensure that the regression’s error, ε, has no remaining 
serial correlation. The Im, Pesaran, and Shin test elaborates on the Dickey-Fuller test by 
calculating the t-value for α in a regression for each sample, and averaging them. This statistic 
does not have a standard t distribution, but the authors calculate its distribution, allowing tests of 
the null hypothesis that the series do not contain unit roots. 
 

Unfortunately, the fact that there are only eight or nine observations per country in my 
sample gives this test very little power, and does not reject the null hypothesis of a unit root for 
the IMR or its log, even though the average estimated autocorrelation is only 0.30 and 0.33, 
respectively. However, if we accept the assumption that all countries’ data are drawn from the 
same process, then we can pool the data to examine the serie’s autocorrelations and also perform 
standard Dickey-Fuller tests. This may seem a strong assumption, but it is one that we will have 
to make to justify cross-country growth regressions, so there is no additional harm in making it 
here. This amounts to running one augmented Dickey-Fuller regression only, using the standard 
test for a unit root, and allowing each sub-sample to have its own intercept: 

 
tttjjtt dIMRdIMRDIMRdIMR εββδα +++= −−− ...22111  (6) 

                                                 
6 The panel is unbalanced because not all DHS surveys are carried out at the same time in a calendar year. This 
means that in mapping the birth and death data to calendar years, some years have very few observations. We 
dropped years in which the number of observations was less than 200. 
7 In time series analysis, series with a unit root are not stationary, while those whose roots are all less than one are 
stationary. 
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where the Dj’s are sample-specific dummies. Using up to six lags, the augmented Dickey-Fuller 
tests consistently reject the null of a unit root with high t-statistics, with or without a linear or 
quadratic trend in the regression.  
 

Table 1 shows the autocorrelations of IMRs and their log. An AR(1) process seems 
adequate to describe both series, with the autocorrelation coefficient being small, at least by 
business cycle standards. With an autocorrelation of 0.42, for example, the correlation between 
an IMR and its three-year lag is only 0.03, suggesting that whatever “business cycle” effects 
there are in these data are of relatively high frequency, so that aggregations of five- or even 
three-year periods will capture structural rather than cyclical effects of regressors on the IMR. 

 
 For comparison, I also performed the Im, Pesaran, and Shin test on the log of real per 
capita GDP taken from the GDN data. This test also accepts the null of a unit root, whether or 
not a trend is included in the Dickey-Fuller regression. In this case, there are many more 
observations per country, 34 on average, and the estimated autocorrelation is about 0.93 (0.81 for 
the models with trends), so there is less reason to worry about the power of the test. 
Nevertheless, analogous to the IMR tests, I pooled the country time series to test for a unit root 
with the traditional Dickey-Fuller test, assuming that each countries’ data are draws from a 
common process. These tests also reject the null of a unit root, whether or not a trend is included, 
but with estimates of the autocorrelation coefficient that are between 0.95 and 0.97, sufficiently 
close to one to call into question the growth regression specification for this variable. Certainly 
the sample autocorrelations shown in Table 1 lead to the same conclusion. 
 

Cross-Country Infant Mortality Regressions 
 
Absolute Convergence 
 
 The growth regression literature quickly dismissed the hypothesis that countries’ GDP 
per capita converges absolutely (Kormendi and Meguire, 1985). There is no evidence that poor 
countries grow faster than rich ones without controlling for other factors, among them 
endowments and policies. The same is not true for infant mortality rates. Table 2 reports 
regressions that test for absolute convergence of infant mortality rates and their log. These data 
now come from the Global Development Network growth database rather than the DHS, so they 
include a broad range of developed and developing economies. The models include the 
beginning-of-period IMR and time dummies Tt (for either decades or five-year periods) as the 
only regressors: 
 

ttttt TIMRdIMR εγα ++= −1  (6) 
 
 One obvious econometric problem with this specification is that the beginning-of-period 
IMR is measured with considerable error (Bhargava, et.al., 2001). This causes two 
countervailing sources of bias in the estimate of absolute convergence (α):  standard attenuation 
bias towards zero, and a bias that comes from the fact that the dependent variable is defined as 
end-of-period minus beginning-of-period IMR. The latter bias is negative, working in the 
opposite direction of the attenuation bias, because a measurement error that increases the 
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beginning-of-period IMR also reduces the change over the period. To control for these biases, 
the regressions in Table 2 instrument the beginning-of-period IMR with its own value lagged 
once (either a decade or five years prior).8 
 

A negative coefficient on the beginning-of-period IMR indicates absolute convergence, 
unconditional on anything except the time period. There is clear evidence that the infant 
mortality rate does display absolute convergence, both in the decadal and half-decadal 
regressions (columns 1 and 3, respectively). But the rate of absolute convergence is very slow, 
between 1 and 2 percent per year of the beginning-of-period IMR. Thus, unlike GDP per capita, 
“poorer” countries are catching up with “wealthier” ones, but at a rate that is so slow that it 
would take several decades for the highest IMR countries to catch up with the lowest.  

 
In apparent contrast to columns 1 and 3, columns 2 and 4 show a divergence in the log of 

IMR. That is, the higher the initial IMR, the lower is its percentage rate of change in absolute 
value. While they at first appear contradictory, these two results are entirely consistent: countries 
with high initial IMRs have larger absolute declines in IMR over time, but that decline is a 
smaller percentage of the initial IMR. Figure 2 makes this point by graphing the same data as in 
Figure 1, but in logs and changes in logs. These series are slightly concave, though in general 
they appear to be closer to linear. 

 
The contrast between the results for the IMR and its log does raise the question, however, 

of which variable is preferable. Comparing Figures 1 and 2 makes it clear why most previous 
work on infant mortality rates has used the log variable: it is closer to linear, which is appropriate 
for linear regression. However, the convexity of Figure 1 is a large part of what is interesting in 
this paper:  we want to understand whether and how infant mortality rates converge across 
countries. As such, the IMR, and its absolute rate of change, is the more appropriate variable. 

 
Conditional Convergence – Country Fixed Effects 
 
 Many of the explanatory variables found in the growth regression literature are similar to, 
and correlated with, country fixed effects. Variables like distance to the equator, ethnolinguistic 
diversity, landlockedness, colonial heritage, and region have all been proposed as explanations 
for countries’ growth rate. All of these variables do not have temporal variation, so a quick way 
to capture their effect is to simply include country fixed effects in equation (6). Table 3 reports 
these results, suppressing the coefficients for the country dummies. 
 

These results differ from those in Table 2 in several important ways. First, the regressions 
in logs now show convergence as well, indicating that even the percentage decline in IMR is 
larger for higher IMRs, once the country fixed effect is accounted for. Thus, there is no doubt 
about this conditional convergence. Further, the effect is much stronger, between 8 and 10 
percent of initial IMR per year, suggesting that countries converge to their own equilibrium IMR 

                                                 
8 Note that the practice of using lagged values of regressors as instruments is not usually reliable if the concern is 
that the regressor is endogenous, but that is not the problem here. We simply want to eliminate any bias due to 
measurement error. As long as the measurement error in period t is uncorrelated with the lagged value of the IMR, 
this procedure suffices. As it turns out, there is very little difference between these regressions and ones that do not 
instrument the beginning-of-period IMR. 
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rather quickly. That is also consistent with the low autocorrelations reported in Table 1. Further, 
the fact that the conditional convergence is so strong, while the absolute convergence is not, 
suggests that countries do in fact have different equilibrium IMRs. Understanding the reasons for 
these differences, whether in policies or other country characteristics, thus seems a worthwhile 
enterprise. Finally, note that the time coefficients are now significantly different from zero, with 
the largest gains (declines) in the most recent time periods. Thus, once we control for country 
fixed effects, we have clear evidence of general technical progress in infant mortality rates 
around the world. 

 
Conditional Convergence – Policy Effects  
 
 In this section, I explore a variety of policy variables that might have an effect on the rate 
at which infant mortality declines, conditional on the initial infant mortality rate. The first 
possibility that I examine is whether the same variables that explain more rapid economic growth 
also explain more rapid declines in infant mortality. I have already noted that the growth 
literature has explored scores of variables, too many to try out here. But Table 4 includes five 
variables that are often significant determinants of economic growth:  the black market premium 
for foreign exchange, a measure of non-market trade restrictions; the ratio of M2 money supply 
to GDP, a measure of financial depth; the inflation rate, a measure of inefficient taxation; and the 
real exchange rate, a measure of competitiveness; and the share of children of secondary school 
age attending school. These variables are all individually and jointly insignificantly different 
from zero, so there is no evidence that any of these variables helps to explain declines infant 
mortality. The second regression also includes the log of real GDP per capita (in levels, not its 
growth), instrumented with the terms of trade, as suggested by Pritchett and Summers (1996). 
This variable is significant and indicates that, after controlling for the initial IMR, richer 
countries have more rapid declines in IMR. Doubling GDP per capita causes infant mortality to 
decline by about 1.5 children per thousand per year. This effect vanishes, however, if we include 
country fixed effects in the regression (Model 2f). This is perhaps not too surprising, since the 
level of GDP will change only very slowly and so behave something like a fixed effect. Note that 
the secondary school variable is statistically significant in three of the four regressions, but with 
the wrong sign, a result that may be due to its correlation with the real GDP variable or the fixed 
effects. This result is counterintuitive, and also inconsistent with the growth regression literature, 
where secondary schooling almost always has a positive impact on growth. Finally, it is 
interesting that the time dummies change substantially in the fixed effect regressions, becoming 
progressively more negative and statistically significant. This pattern means that, after 
controlling for countries’ fixed effects, infant mortality is decreasing at an accelerating rate over 
time. 
 
 The next set of regressions considers whether a set of readily available indicators of 
health care coverage has any effect on declines in infant mortality. In addition to school 
enrolments, initial IMR, and real GDP per capita, these equations include the number of doctors, 
nurses, and hospital beds, all per 1000 inhabitants. Model (3) shows that none of the medical 
care variables is significantly different from zero and, in fact, they all have the wrong sign. 
Model (4) excludes the number of nurses per 1000 inhabitants because that variable is missing 
for many countries in the dataset. Excluding that variable increases the sample by a third. 
Nevertheless, except for the GDP variable, which is now insignificant, the estimates change very 
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little, and neither the number of doctors nor the number of hospital beds has a significant effect 
on declines in the infant mortality rate. 
 
 One interesting result from these and almost all regressions that do not include fixed 
effects is that primary school enrolments significantly increase the rate of decline of infant 
mortality, but secondary enrolments do not. This result is opposite that usually found in the 
economic growth literature, where secondary enrolments typically increase growth rates while 
primary enrolments do not. The fact that the primary enrolment variable becomes insignificant 
when the fixed effects are included, however, casts doubt on the reliability of the correlation. 
Like GDP, this variable is unlikely to change rapidly over time, so that it may proxy for some 
other country characteristic unaccounted for in the regression. 
 
 Equation (5) includes variables for DPT and measles vaccination rates for infants. These 
variables do have the correct sign in the regressions without fixed effects, and the DPT rate has a 
statistically significant, albeit small, effect on the decline of infant mortality rates: a one percent 
increase in DPT vaccination rates increases the decline in infant mortality by 0.2 children per 
thousand per year. The (statistically insignificant) effect of measles immunizations is about half 
of that. Once again, however, including the fixed effects makes these variables insignificant. 
 
 Another determinant of infant mortality rates that the literature explores is inequality. 
Waldmann (1992) uses a 57-country cross-section to argue that, after controlling for the level of 
GDP per capita, a higher share of total income going to the rich increases the infant mortality 
rate.9 Table 6 explores this possibility with our much larger sample, in a growth regression 
context. Model (6) includes the gini coefficient, and model (7), which is closer to Waldmann’s 
specification, includes the share of income going to the richest 20 percent of the population.10 
Surprisingly, both regressions suggest that greater inequality increases the rate of decline of 
infant mortality, contradicting Waldmann. The gini coefficient is not statistically significant, but 
the richest quintile’s share is. It suggests that an increase in the top quintiles share of 1% causes 
infant mortality to decline by an extra .13 children per thousand per year. But as with most of the 
other results, these do not hold up once the fixed effects are included. 
 
 In addition to the policy variables considered, it is interesting to note that the time 
dummies are rarely significant and have no clear pattern in the regressions without fixed effects, 
but they are often significant, and usually decline with time in the regressions with fixed effects. 
Thus, without accounting for fixed country characteristics, there is no clear trend in the rate of 
technological progress for infant mortality. This does not imply that things are not improving; 
they are, but at a rate that is more or less constant over time, not an accelerating one. If we do 
account for fixed characteristics, then the results suggest significant technological progress in 
reducing infant mortality after controlling for the other regressors. 

                                                 
9 And of course, there is a burgeoning literature on the effects of inequality on growth of GDP. See, for example, 
Easterly (2001) or Barro (2000). 
10 Waldmann uses the richest 5 percent of the population, but that variable is not on the Deninger and Squire dataset 
that I use for the distribution data. He also uses the income per capita of the poorest 20 percent rather than national 
income per capita. The last model in the table uses this variable instead of log(GDP per capita), and yields similar 
results. 
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Conclusions 
 
 From the perspective of identifying possible determinants of declines in infant mortality, 
these results are rather discouraging. Only two policy variables, primary school enrolments and 
DPT vaccination rates for infants, show any consistent correlation with declining infant 
mortality, and even those correlations are not robust to the inclusion of fixed effects, a simple 
way to pick up time invariant unobserved variables.  
 

The other readily available measures of the availability of health care – doctors, nurses, 
and hospital beds per 1000 inhabitants – have no impact at all on the rate of decline of infant 
mortality. One could argue that these variables are measured with substantial error, which could 
account for their low t-statistics (from attenuation bias). But that would not explain why their 
coefficients are usually positive. It is plausible to suppose that these variables are not too relevant 
to national infant mortality rates because they measure mostly urban, formal sector health care 
availability that is not available to most poor people whose children are most at risk. 
Unfortunately, there are no widely available data on access to the kinds of primary health care 
that might better explain infant mortality, especially in poorer countries. Perhaps a data 
collection exercise for health care access and quality similar to the one carried out by Barro and 
Lee for education is in order. 

 
Perhaps a more interesting “non-result” is the fact that there is no evidence at all that the 

black market premium, the M2/GDP ratio, inflation, or the real exchange rate – all policy 
variables that typically explain economic growth – help to explain declining infant mortality, and 
only weak evidence that real GDP per capita itself is correlated with these declines. We have 
long known from microeconomic data that income is not a very good predictor of children’s 
health status. These results confirm that in a growth regression context. They also suggest that 
the determinants of progress of nations in one welfare dimension, economic growth, are distinct 
from those in another, infant mortality. 
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Figure 1 – Infant mortality rates in a cross-section of countries, ordered by rate 
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Figure 2 – Infant mortality rates in a cross-section of countries, ordered by rate 
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Table 1 – Autocorrelations for the infant mortality rate and its log 
 

Variable: IMR  ln(IMR)  Ln(Real GDP p.c.) 
 
Lag 

 
AC 

Partial 
AC 

  
AC 

Partial 
AC 

  
AC 

Partial 
AC 

1 0.416 0.416  0.359 0.359 0.998 0.998
2 0.263 0.109  0.228 0.113 0.995 -0.211
3 0.122 -0.026  0.107 -0.008 0.991 -0.090
4 0.001 -0.080  0.053 -0.006 0.987 -0.032
5 -0.260 -0.301  -0.232 -0.300 0.983 -0.040
6 -0.268 -0.090  -0.329 -0.227 0.979 -0.057
7 -0.344 -0.166  -0.328 -0.129 0.974 -0.035
8 -0.137 0.160  -0.158 0.093 0.969 -0.020
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Table 2 – Tests for absolute convergence of infant mortality rates 
 

Dependent Variable: dIMR dln(IMR) 
     

Regressor     
IMR -0.111** -0.080**  

ln(IMR) 0.081** 0.032**
    

Constant -9.922** -2.679** -0.691** -0.027**
    

Dummy for 1980s 2.727  0.050* 
Dummy for 1990s 8.119*  0.191* 

    
Dummy for 1971-1975 0.205 -0.019
Dummy for 1976-1980 -0.942 -0.033*
Dummy for 1981-1985 -0.406 -0.022
Dummy for 1986-1990 2.102 0.017
Dummy for 1991-1995 1.024 0.000

    
R2 for 1970s 0.162  0.177 
R2 for 1980s 0.256  0.088 
R2 for 1990s 0.298  0.102 

    
R2 for 1966-1970 0.118 0.010
R2 for 1971-1975 -0.024 0.064
R2 for 1976-1980 0.235 0.095
R2 for 1981-1985 0.288 0.051
R2 for 1986-1990 -0.007 0.035
R2 for 1991-1995 0.304 0.040

  
Ave. Obs. Per Period: 161.0 165.5 161.0 165.5

Notes: * and ** indicate significant at 5% and 1% levels, respectively. 
All estimates use a seemingly unrelated regression method that allows the error variance to differ 

by decade, and to be correlated across decades. 
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Table 3 – Tests for conditional convergence of infant mortality rates, fixed effects 
 

Dependent Variable: dIMR dln(IMR) 
     

Regressor     
IMR -0.566** -0.395**  

ln(IMR)  -0.433** -0.212**
    

Constant 9.314 11.281** 0.920** 0.509**
    

Dummy for 1980s -6.203**  -0.136** 
Dummy for 1990s -7.230**  -0.174** 

    
Dummy for 1971-1975 -3.114** -0.057**
Dummy for 1976-1980 -7.189* -0.112**
Dummy for 1981-1985 -9.659** -0.145**
Dummy for 1986-1990 -9.460** -0.141**
Dummy for 1991-1995 -12.069** -0.198**

    
R2 for 1970s 0.361  0.619 
R2 for 1980s 0.865  0.820 
R2 for 1990s 0.745  0.549 

    
R2 for 1966-1970 0.436 0.182
R2 for 1971-1975 0.039 0.574
R2 for 1976-1980 0.636 0.666
R2 for 1981-1985 0.744 0.563
R2 for 1986-1990 0.279 0.348
R2 for 1991-1995 0.463 0.203

     
Ave. Obs. Per Period: 161.0 165.5 161.0 165.5

Notes: * and ** indicate significant at 5% and 1% levels, respectively. 
All estimates use a seemingly unrelated regression method that allows the error variance 
to differ by decade, and to be correlated across decades. 
Coefficients on country dummies not reported. 
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Table 4 – Regressions of change in infant mortality on determinants of economic growth 
 

Model: (1)  (2)  (1f)  (2f)  
Variable     

Intercept -3.635* 8.641 -3.372 -20.311 
Black market premium 0.000 0.000 -0.001 0.000 

M2/GDP ratio -0.024 -0.033 -0.036 -0.069 
Inflation rate -0.003 -0.003 -0.002 -0.001 

Real exchange rate -0.006 -0.008* 0.004 0.002 
Secondary school enrolment rate 0.028 0.055* 0.133** 0.123** 

Beginning of period IMR -0.068** -0.079** -0.195** -0.212** 
ln(Real GDP per capita)   -1.463*   2.185 

Dummy for '71-'75 -0.949 -0.984 -2.364* -2.767* 
Dummy for '76-'80 -0.659 -1.083 -4.688** -5.561** 
Dummy for '81-'85 -0.788 -1.311 -6.619** -7.610** 
Dummy for '86-'90 1.794 0.714 -5.991** -6.940** 
Dummy for '91-95 2.594** 1.695 -6.069** -6.981** 

        
R2, '66-'70 0.333 0.330 0.692 0.686 
R2, '71-'75 0.299 0.304 0.491 0.380 
R2, '76-'80 0.301 0.306 0.660 0.635 
R2, '81-'85 0.363 0.375 0.737 0.737 
R2, '86-'90 0.081 0.085 0.487 0.525 
R2, '91-95 0.244 0.265 0.434 0.455 

    
Average Observations per Period 75 70 75 70 

Notes: * and ** indicate significant at the 5% and 1% levels, respectively. 
Model is estimated with seemingly unrelated regressions for half-decades. The IMR is 
instrumented with its own lagged value, and ln(GDP) is instrumented with the terms of 
trade. 
A joint test of the black market premium, M2/GDP ratio, inflation rate, and real exchange 
rate does not reject the null of zero coefficients. 
Coefficients on the country-specific dummies are not reported. 
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Table 5 – Regressions of change in infant mortality on measures of health care availability 
 

Model: (3)  (4)  (5)  (3f)  (4f)  (5f)  
Variable       

Intercept 20.411* 13.196* 62.413* 46.461* 4.989 45.745
Secondary school enrolment rate 0.020 0.030 -0.060 0.159 0.126* -0.099 

Beginning of period IMR -0.105** -0.096** -0.276** -0.219** -0.250** -0.996** 
ln(Real GDP per capita) -2.075* -1.263 -3.420 -6.015* -0.842 4.234 

Primary school enrolment rate -0.081** -0.079** -0.189* -0.027 -0.003 -0.520* 
Doctors per 1000 people 0.009 0.008 0.002 -0.043 -0.004 0.031 
Nurses per 1000 people 0.004     0.001     

Hospital beds per 1000 people 0.002 0.002 -0.004 0.007 0.000 -0.031 
DPT vaccination rate     -0.085*     0.040 

Measles vaccination rate     -0.046     -0.164 
Dummy for '71-'75 -1.918 -0.674   -2.619 -3.099**   
Dummy for '76-'80 -1.680 -0.804   -4.156* -5.706**   
Dummy for '81-'85 -0.366 0.310   -2.489 -5.932**   
Dummy for '86-'90 2.046 2.700 3.778 -2.068 -5.906* -2.472 
Dummy for '91-95 -0.510 1.401 2.592   -8.211* -7.220 

            
R2, '66-'70 0.349 0.413   0.515 0.649   
R2, '71-'75 0.397 0.321   0.604 0.688   
R2, '76-'80 0.396 0.353   0.758 0.770   
R2, '81-'85 0.337 0.346 0.734 0.655 0.656 0.823 
R2, '86-'90 -0.150 -0.139 -0.004 0.426 0.403 0.921 
R2, '91-95 0.274 0.150 0.647  0.195 0.943 

            
Average Observations per Period 44 60 18 44 60 18 

Notes: * and ** indicate significant at the 5% and 1% levels, respectively. 
Model is estimated with seemingly unrelated regressions for half-decades. The IMR is instrumented with its own lagged value, 
and ln(GDP) is instrumented with the terms of trade. 
A joint test of the doctors, nurses, hospital beds, and secondary school enrolments does not reject the null of zero coefficients 
for all these variables in any regression. 
Coefficients on the country-specific dummies are not reported. 
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Table 6 – Regressions of change in infant mortality on inequality measures 
 

Model: (6)  (7)  (8)  (6f)  (7f)  
Variable      

Intercept 0.932 10.830  6.344 22.422 4.064 
Secondary school enrolment rate 0.006 -0.015  0.145 0.127* 

Beginning of period IMR -0.102** -0.114**  -0.072** -0.255** -0.220** 
ln(Real GDP per capita) 0.848 0.115   -0.204 -2.686 -1.025 

Primary school enrolment rate -0.093** -0.079**  -0.034* -0.012 
Doctors per 1000 people -0.002 -0.002  0.007 0.001 

Hosptal beds per 1000 people 0.002 0.002  0.000 -0.003 
Gini coefficient -0.039    -0.027   

Share of richest quintile   -13.386* -18.070**   10.284 
Dummy for '71-'75 -0.281 0.486 -0.949 -2.495 -1.626 
Dummy for '76-'80 -0.666 0.279 -1.058 -5.017 -3.743 
Dummy for '81-'85 0.769 2.196 0.1467 -5.463 -4.048 
Dummy for '86-'90 1.119 2.525 0.5625 -5.957 -4.326 
Dummy for '91-95 3.252 2.798 1.9756 -7.857 -4.811 

         
R2, '66-'70 0.538 0.535 0.320 0.728 0.856 
R2, '71-'75 0.347 0.508 0.436 0.668 0.777 
R2, '76-'80 0.468 0.536 0.540 0.853 0.891 
R2, '81-'85 0.677 0.714 0.410 0.602 0.378 
R2, '86-'90 0.144 0.127 0.223 0.631 0.549 
R2, '91-95 -0.241 0.346 0.098 -0.558 -0.083 

         
Average Observations per Period 40 32 55 39 32 

Notes: * and ** indicate significant at the 5% and 1% levels, respectively. 
Model is estimated with seemingly unrelated regressions for half-decades. The IMR is instrumented with its own lagged value, 
and ln(GDP) is instrumented with the terms of trade. 
Coefficients on the country-specific dummies are not reported. 

 


